BHARATI VIDYAPEETH INSTITUTE OF TECHNOLOGY ## **Question Bank** **Program: - Instrumentation** | Semester: - II | Course Name: -ASE(22211) | |--|--------------------------------| | Applied Chemistry(22211) | | | Q 1) Water which does not produce lather with soap is a) Mineral water b) Hard water c) Soft water d) Distilled water | | | Q 2) Permanent hardness of water is caused by the presence of a) Bicarbonates of calcium and magnesium b) Carbonates of sodium and potassium c) Chlorides and sulphates of calcium and magnesium d) Phosphates of sodium and potassium | • | | Q 3) Highly alkaline water in boilers causes a) Corrosion b) Scale and sludge formation c) Priming and foaming d) Caustic embrittlement | | | Q 4) coagulant like alum is added to water to remove a) biological impurities b) fioating minerals c) colloidal impurities d) all of these | | | Q 5) In ozonizationis used to sterilize water. a) Oxygen gas b) Ozone gas c) Solid ozone d) Chlorine gas | | | Q 6) Temporary hardness of water is caused by the presence of a) Chlorides of calcium and magnesium b) Sulphates of calcium and magnesium c) Bicarbonates of calcium and magnesium d) Carbonates of sodium and potassium | f | | Q 7) screening is the process of removingfrom water. a) Scale and sludge b) Floating material c) Suspended particles d) Hardness | | | Q 8) In zeolite process for treatment of hard water exhausted z using a) 10 % calcium chloride solution b) 10 % magnesium sulphate solution c) 10 % magnesim chloride solution | reolites can be regenerated by | d) 10 % sodium chloride solution | | Permanent hardness is also known as | |--|---| | , | Carbonate hardness | | | Non carbonate hardness | | | Both (a) and (b) None of these | | Q 10) | When soft,lose,slimy deposits are formed inside the boiler and do not stick up permanentl | | _ | hey are known as | | a) | Resins | | , | Zeolites | | , | Scales
Sludges | | | Which of the following chemical is added in the process of coagulation? | | _ | Aluminium sulphate | | | Aluminium oxide | | , | Calcium chloride | | d) | None of these | | _ | In ion exchange process of water softening, exhausted cation exchanger resin is | | _ | erated by using | | , | Dilute acid | | , | Alkali | | , | Sand
Coal | | a)b)c) | Bio chemical oxygen demand (B.O.D.) Dissolved oxygen (D.O.) Chemical oxygen demand (C.O.D.) None of these | | | The principle of chlorination is | | - | Formation of nascent oxygen | | | Formation of oxygen molecules | | | Formation of chlorine gas Formation of hydrochloric acid | | O 15 | Sedimentation is a physical process used to remove | | | Colloidal particles | | | Suspended particles | | | Microorganisms | | d) | All of the above | | Q 16 | The Purest form of naturally occurring water is | | |) Rainwater | | |) Riverwater | | |) Pond or Lake water) Well Water | | () 17) | Sterilization of water can be done by | | Q 1/) | a) Chlorination | | | b) Aeration | | | c) Using UV Rays | | | d) All of these | | Q 18) B | Boilers | do not the trouble of while using hard water to generate steam. | |---------|---------|---| | | a) | Scale and sludge formation | | | b) | Corrosion | | | c) | lubrication | | | d) | Priming and foaming | | Q 19) R | Revers | e osmosis is a water purification technique that uses | | | a) | Coagulant | | | b) | Raisins | | | c) | Semi permeable membrane | | | d) | Lime soda | | Q 20) | In io | n exchange process of water softening, exhausted anion exchanger resin is | | regene | rated | by using | | a) | Dilute | e acid | | b) | Alkal | i | | c) | Sand | | | d) | zeolit | e | | Applied Physics (22211) | | |--|---| | 1) Capacitance of capacity of a conductor is dea) ratio of potential to chargec) Product of charge and potential | b) sum of potential and charge d) ratio of charge to potential | | 2) Capacity of parallel plate condenser is given a) $C = \varepsilon_0 kAd$ b) $C = \frac{kA}{\varepsilon_0 d}$ | by $c) C = \frac{\varepsilon_{0 kA}}{d} \qquad d) C = \frac{\varepsilon_{0 kd}}{A}$ | | 3) Capacitance of Capacitor with dielectric mat Without dielectric {i.e. air} a) K times more than b) k times le | | | 4) Capacitor stores | | | a) large charge at lower potentialc) small charge at small potential | b)small charge at higher potential d)large charge at higher potential | | 5) Energy of charged condenser is given by
a) E=2CV ² b) E=1/2 CV | c) $E=1/2 \text{ CV}^2$ d) $E=1/2 \text{ C}^2 \text{ V}$ | | 6) E.M.F of a cell is defined as the potential diff when | ference between two terminals of the cell | | a) The circuit is closec) High current is drawn | b) the circuit is opend) low resistance is connected | | 7) The opposition offered by electrolyte to flow positive electrode of a cell through electrolyte in | is called as | | a) External resistanceb) circuit resistanced) none of these | ance c) Internal resistance of cell | | 8) Kirchhoff's 1 st Law or junction rule state that electrical circuit | · | | a) Product of current is 0c) Algebraic sum of current is 0 | b) algebraic sum of potential is 0d) product of potential is 0 | | 9) Kirchhoff's 2 nd Law or loop rule state's that algebraic sum of product of current and resistant | | | a)product of e. m. f. in the circuit | b) ratio of e. m. f. in the circuit | d)sum of currents c) algebraic sum of e. m. f. in the circuit | 10) Balancing condition of wheatstone's network with R_1 , R_2 , R_3 and R_4 in cyclic order is | | | | | |---|--|--|-------------------------------|--| | | b) $\frac{R_1}{R_2} = \frac{R_4}{R_3}$ | c) $\frac{R_1}{R_4} = \frac{R_3}{R_2}$ | d) $R_1R_2 = R_3R_4$ | | | 11)Principle of potentiometer is fall of potential is | | | | | | 12) If area of parallel plat capacitance of condenser | | | | | | be | b) 44.5 <i>F</i> | c) $44.5 \times 10^{-9} F$ | d) $44.5 \times 10^{-12} F$ | | | 13) If two capacitors of cabe | apacitance C eacl | n are connected in seri | ies then its capacitance will | | | a) C b) C/3 | C | c) C/2 | d) C/4 | | | 14) If a capacitor of capacitor will be | city 20μF is conn | ected across 10v batte | ery then charge drawn by a | | | a) 50μC b) 100 | μC | c) 200 µC | d) 300 μC | | | 15) Two condensers have equivalent capacitance of 8 μF when connected in parallel and 2 μF when connected in series then individual capacitances will be | | | | | | · | | c) 1µF, 8µF | | | | 16) If a battery of e.m.f.10v is connected across a resistance of 100 ohm drop a resistance observed across a resistance is 9.8v, then internal resistance of a cell will be | | | | | | a) 2 ohm | b) 50hm | c) 10ohm | d) 20ohm | | | 17) The maximum electric field that a dielectric medium can withstand without breakdown is called as | | | | | | a) Saturation field b |) dielectric streng | gth c) utmost fi | ield d) optimized field | | | 18) When a number of capacitances connected in parallel then effective capacitancea) Increasesb) decreasesc) remain samed) Increases or decreases | | | | | | 19) capacitance of a condenser is inversely proportional to a) area of plate b) dielectric material between them c) Distance between them d) current through the circuit | | | | | | 20) When a number | er of capacitances conn | ected in series then eff | ective capacitance | | |--|---|---|--------------------------------------|--| | a) Increases | b) decreases | c) remain same | d) Increases or decreases | | | 21) potential difference between two metal plates isin bringing unit positive charge from plate B to A against electric field. | | | | | | a) work done | b) force applied | c) time taken | d) efforts taken | | | capacitor will be | eitor is connected to 10° . b) $500 \times 10^{-6} J$ | battery, electrostatic c) 1000×10^{-5} | | | | | | | | | | 23)energy of charg
a) E=2Q ² /C | ged condenser is given b)E=Q ² /2C | • | d) E=1/2QC | | | 24) law of condens | ser in parallel state that | equivalent capacitanc | e of parallel combination is | | | a) Sum of capacitances of condensers b) product of capacitances of condensers c) Sum of reciprocal of individual capacitances d) ratio of individual capacitances | | | | | | 25) A condenser is | s an arrangement of two | conductors separated | by | | | a) conductor | b) semiconductor | c) insulator | d) silver | | | 26) The process of spontaneous emission of radioactive substance is known asa) Photoelectric emission b) thermo emission c) radioactivity d) LASER | | | | | | 27) The process by which an unstable atomic nucleus losses energy by emitting radiations, such as α , β , γ radiations is known as | | | | | | • | nission b) therm | o emission c) radi | oactivity d) LASER | | | 28)All naturally or radioactive. | ecurring element whose | atomic number are gr | reater thanare | | | a) 12 | b) 32 c) | | d) 82 | | | · | d helium atoms are | | 10 1 | | | a) α Particles30) When radioact | • • | c) γ particle | s d) photons verted into new element | | | which is | ive element fadiate fad | iations then it get con- | refred into new element | | | a) Also radioactive | e b) not a radioac | tive c) compou | and d) a mixture | | | 31) The mass of α Particles is | | | | | | * | | ^{7}kg c) 2.2 × 10 | ^{-10}kg d) 2.2 × $10^{10}kg$ | | | 32) The charge of α Particles is | | | | | |---|--|--|--|--| | a) $3.2 \times 10^{19} C$ b) $3.2 \times 10^{-19} C$ c) $3.2 \times 10^{14} C$ d) $3.2 \times 10^{-14} C$ | | | | | | 33) Penetrating power of α Particles is less and it is times than β particles. | | | | | | a) 10 b) 100 c) $\frac{1}{10}$ d) $\frac{1}{100}$ | | | | | | 34) The range of β Particles is α Particles, its range in air at N.T.P.is 1meter. | | | | | | a) Equal to b) less than c) more than d) less than or equal to | | | | | | 35) γ -rays are | | | | | | a) Positively charged b) negatively charged c) more than d) none of these | | | | | | 36) As per law of radioactive disintegration (decay) which atom will disintegrate first | | | | | | is | | | | | | a) Stimulated disintegration b) spontaneous disintegration | | | | | | c) stimulated integration d) spontaneous integration | | | | | | | | | | | | 37) The rate of decay of radioactive atoms is Number of atoms present. | | | | | | a) Equal to b) inversely proportional c) Directly proportional d) not proportional | | | | | | | | | | | | 38) The number of radioactive substance decreases with time. | | | | | | a) exponentially b) linearly c) speedily d) slowly | | | | | | | | | | | | 39) Radioactive disintegration equation is | | | | | | a) $\frac{dt}{t} = -\lambda dN$ b) $\frac{dt}{dt} = -\lambda dN$ c) $\frac{dN}{N} = \lambda dt$ d) $\frac{dN}{N} = -\lambda dt$ | | | | | | 40) The decay constant is defined as the reciprocal of that time duration in which the | | | | | | number of atoms of radioactive substance falls to of its original value. | | | | | | a) 12% b) 25% c) 37% d) 50% | | | | | | 41) The time in which half of the radioactive sustenance is disintegrated is called | | | | | | as | | | | | | a) Reduced life b) life time c) double life period d) half-life period | | | | | | | | | | | | 42) The distant between the center of to successive cooperation is called as | | | | | | a) frequency b) period c) wavelength d) amplitude | | | | | | | | | | | | 43) The time taken by a particle to complete one oscillation is called as Of | | | | | | oscillation. | | | | | | a) Frequency b) period c) wavelength d) amplitude | | | | | | 44) I anaitudinal cound yyaya trayal in the form of alternate | | | | | | 44) Longitudinal sound wave travel in the form of alternate | | | | | | a) Crest and trough b) compression and rarefactions d) trough and rerefaction | | | | | | c) crest and compression d) trough and rarefaction | | | | | | | g higher frequency | that is higher | penetrating power | than x-ray are known | |---|----------------------------|--|--|---------------------------------------| | as
a) Radio waves | | | c) γ-rays | d) infra rays | | 46) Half-life period a) $\frac{0.693}{\lambda}$ | | ostance is give $c) \frac{\lambda}{2}$ | en by $T_{1/2}$ is equal to d) $\frac{2}{\lambda}$ |),,,,, | | 47) The relation be | tween velocity, pe | riod and wave | elength is | | | a) $n=v \lambda$ | | b) v= n λ | c)v= n/λ | d) v=λ/n | | 48) γ -rays show the a) less production 49) α Particles are a) $_{1}\text{He}^{2}$ | b) high pre represented as | roduction | , <u>-</u> | d) pair production d) $_2\text{He}^2$ | | 50) when a radioactive element radiates radiation then it gets converted into new element which is also radioactive. This change is | | | | | | a) Reversible | b) irreversi | ble | c) stimulated | d) none of | | these | | | | | | | | | | |